高中文科数学一轮复习——集合专题


第一章
第一节

集合

集合的含义、表示及基本关系 A组

1.已知 A={1,2},B={x|x∈A},则集合 A 与 B 的关系为________. 解析:由集合 B={x|x∈A}知,B={1,2}.答案:A=B 2.若? {x|x2≤a,a∈R},则实数 a 的取值范围是________.

解析:由题意知,x2≤a 有解,故 a≥0.答案:a≥0 3.已知集合 A={y|y=x2-2x-1,x∈R},集合 B={x|-2≤x<8},则集合 A 与 B 的关系是 ________. 解析:y=x2-2x-1=(x-1)2-2≥-2,∴A={y|y≥-2},∴B A. 答案:B A 4.(2009 年高考广东卷改编)已知全集 U=R,则正确表示集合 M={-1,0,1}和 N={x|x2+x =0}关系的韦恩(Venn)图是________.

解析:由 N={x|x2+x=0},得 N={-1,0},则 N M.答案:② 5. (2010 年苏、 锡、 常、 镇四市调查)已知集合 A={x|x>5}, 集合 B={x|x>a}, 若命题“x∈A” 是命题“x∈B”的充分不必要条件,则实数 a 的取值范围是________. 解析:命题“x∈A”是命题“x∈B” 的充分不必要条件,∴A B,∴a<5. 答案:a<5 6.(原创题)已知 m∈A,n∈B,且集合 A={x|x=2a,a∈Z},B={x|x=2a+1,a∈Z},又 C={x|x=4a+1,a∈Z},判断 m+n 属于哪一个集合? 解:∵m∈A,∴设 m=2a1,a1∈Z,又∵n∈B,∴设 n=2a2+1,a2∈Z,∴m+n=2(a1 +a2)+1,而 a1+a2∈Z,∴m+n∈B.

B组
a b ab 1.设 a,b 都是非零实数,y= + + 可能取的值组成的集合是________. |a| |b| |ab| 解析:分四种情况:(1)a>0 且 b>0;(2)a>0 且 b<0;(3)a<0 且 b>0;(4)a<0 且 b<0,讨 论得 y=3 或 y=-1.答案:{3,-1} 2.已知集合 A={-1,3,2m-1},集合 B={3,m2}.若 B?A,则实数 m=________. 解析:∵B?A,显然 m2≠-1 且 m2≠3,故 m2=2m-1,即(m-1)2=0,∴m=1.答案: 1 3.设 P,Q 为两个非空实数集合,定义集合 P+Q={a+b|a∈P,b∈Q},若 P={0,2,5},Q ={1,2,6},则 P+Q 中元素的个数是________个. 解析:依次分别取 a=0,2,5;b=1,2,6,并分别求和,注意到集合元素的互异性, ∴P +Q={1,2,6,3,4,8,7,11}.答案:8 4.已知集合 M={x|x2=1},集合 N={x|ax=1},若 N M,那么 a 的值是________. 1 解析:M={x|x=1 或 x=-1},N M,所以 N=?时,a=0;当 a≠0 时,x= =1 或- a 1,∴a=1 或-1.答案:0,1,-1 5.满足{1} A?{1,2,3}的集合 A 的个数是________个. 解析:A 中一定有元素 1,所以 A 有{1,2},{1,3},{1,2,3}.答案:3 1 b 1 c 1 6.已知集合 A={x|x=a+ ,a∈Z},B={x|x= - ,b∈Z},C={x|x= + ,c∈Z},则 A、 6 2 3 2 6

B、C 之间的关系是________. 解析:用列举法寻找规律.答案:A B=C 7.集合 A={x||x|≤4,x∈R},B={x|x<a},则“A?B”是“a>5”的________. 解析:结合数轴若 A?B?a≥4,故“A?B”是“a>5”的必要但不充分条件.答案: 必要不充分条件 8.(2010 年江苏启东模拟)设集合 M={m|m=2n,n∈N,且 m<500},则 M 中所有元素的和 为________. 解析: ∵2n<500, ∴n=0,1,2,3,4,5,6,7,8.∴M 中所有元素的和 S=1+2+22+?+28=511. 答案:511 9.(2009 年高考北京卷)设 A 是整数集的一个非空子集,对于 k∈A,如果 k-1?A,且 k+1 ?A,那么称 k 是 A 的一个“孤立元”.给定 S={1,2,3,4,5,6,7,8},由 S 的 3 个元素构成的所 有集合中,不含“孤立元”的集合共有________个. 解析:依题可知,由 S 的 3 个元素构成的所有集合中,不含“孤立元”,这三个元素一 定是相连的三个数.故这样的集合共有 6 个.答案:6 10.已知 A={x,xy,lg(xy)},B={0,|x|,y},且 A=B,试求 x,y 的值. 解:由 lg(xy)知,xy>0,故 x≠0,xy≠0,于是由 A=B 得 lg(xy)=0,xy=1. 1 ∴A={x,1,0},B={0,|x|, }. x 1 于是必有|x|=1, =x≠1,故 x=-1,从而 y=-1. x 11.已知集合 A={x|x2-3x-10≤0}, (1)若 B?A,B={x|m+1≤x≤2m-1},求实数 m 的取值范围; (2)若 A?B,B={x|m-6≤x≤2m-1},求实数 m 的取值范围; (3)若 A=B,B={x|m-6≤x≤2m-1},求实数 m 的取值范围. 解:由 A={x|x2-3x-10≤0},得 A={x|-2≤x≤5}, (1)∵B?A,∴①若 B=?,则 m+1>2m-1,即 m<2,此时满足 B?A. m+1≤2m-1, ? ? ②若 B≠?,则?-2≤m+1, ? ?2m-1≤5. 解得 2≤m≤3.

由①②得,m 的取值范围是(-∞,3]. 2m-1>m-6, ? ? (2)若 A?B,则依题意应有?m-6≤-2, ? ?2m-1≥5. m>-5, ? ? 解得?m≤4, ? ?m≥3. 故 3≤m≤4,

∴m 的取值范围是[3,4]. ?m-6=-2, ? (3)若 A=B,则必有? 解得 m∈?.,即不存在 m 值使得 A=B. ? ?2m-1=5, 12.已知集合 A={x|x2-3x+2≤0},B={x|x2-(a+1)x+a≤0}. (1)若 A 是 B 的真子集,求 a 的取值范围; (2)若 B 是 A 的子集,求 a 的取值范围; (3)若 A=B,求 a 的取值范围. 解:由 x2-3x+2≤0,即(x-1)(x-2)≤0,得 1≤x≤2,故 A={x|1≤x≤2}, 而集合 B={x|(x-1)(x-a)≤0}, (1)若 A 是 B 的真子集,即 A B,则此时 B={x|1≤x ≤ a},故 a>2. (2)若 B 是 A 的子集,即 B?A,由数轴可知 1≤a≤2.

(3)若 A=B,则必有 a=2

第二节

集合的基本运算 A组

1.(2009 年高考浙江卷改编)设 U=R,A={x|x>0},B={x|x>1},则 A∩?UB=____. 解析:?UB={x|x≤1},∴A∩?UB={x|0<x≤1}.答案:{x|0<x≤1} 2.(2009 年高考全国卷Ⅰ改编)设集合 A={4,5,7,9},B={3,4,7,8,9},全集 U=A∪B,则集 合?U(A∩B)中的元素共有________个. 解析:A∩B={4,7,9},A∪B={3,4,5,7,8,9},?U(A∩B)={3,5,8}.答案:3 3.已知集合 M={0,1,2},N={x|x=2a,a∈M},则集合 M∩N=________. 解析:由题意知,N={0,2,4},故 M∩N={0,2}.答案:{0,2} 4. (原创题)设 A, B 是非空集合, 定义 A?B={x|x∈A∪B 且 x?A∩B}, 已知 A={x|0≤x≤2}, B={y|y≥0},则 A?B=________. 解析:A∪B=[0,+∞),A∩B=[0,2],所以 A?B=(2,+∞). 答案:(2,+∞) 5.(2009 年高考湖南卷)某班共 30 人,其中 15 人喜爱篮球运动,10 人喜爱乒乓球运动,8 人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________. 解析:设两项运动都喜欢的人数为 x,画出韦恩图 得到方程 15-x+x+10-x+8=30 x=3, ∴ 喜爱篮球运动但不喜爱乒乓 球运动的 人数为 15-3=12(人).答案:12 6. (2010 年浙江嘉兴质检)已知集合 A={x|x>1}, 集 合 B = {x|m≤x≤m+3}. (1)当 m=-1 时,求 A∩B,A∪B; (2)若 B?A,求 m 的取值范围. 解: (1)当 m=-1 时, B={x|-1≤x≤2}, ∴A∩B={x|1<x≤2}, A∪B={x|x≥-1}. (2) 若 B?A,则 m>1,即 m 的取值范围为(1,+∞)

B组
1.若集合 M={x∈R|-3<x<1},N={x∈Z|-1≤x≤2},则 M∩N=________. 解析:因为集合 N={-1,0,1,2},所以 M∩N={-1,0}.答案:{-1,0} 2.已知全集 U={-1,0,1,2},集合 A={-1,2},B={0,2},则(?UA)∩B=________. 解析:?UA={0,1},故(?UA)∩B={0}.答案:{0} 3.(2010 年济南市高三模拟)若全集 U=R,集合 M={x|-2≤x≤2},N={x|x2-3x≤0},则 M∩(?UN)=________. 解析:根据已知得 M∩(?UN)={x|-2≤x≤2}∩{x|x<0 或 x>3}={x|-2≤x<0}.答案: {x|-2≤x<0} 4.集合 A={3,log2a},B={a,b},若 A∩B={2},则 A∪B=________. 解析:由 A∩B={2}得 log2a=2,∴a=4,从而 b=2,∴A∪B={2,3,4}. 答案:{2,3,4} 5. (2009 年高考江西卷改编)已知全集 U=A∪B 中有 m 个元素, (?UA)∪(?UB)中有 n 个元素. 若 A∩B 非空,则 A∩B 的元素个数为________. 解析:U=A∪B 中有 m 个元素, ∵(?UA)∪(?UB)=?U(A∩B)中有 n 个元素,∴A∩B 中有 m-n 个元 素.答案:m-n 6.(2009 年高考重庆卷)设 U={n|n 是小于 9 的正整数},A ={n∈U|n 是奇数}, B={n∈U|n 是 3 的倍数}, 则?U(A∪B)=________. 解析:U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={3,6}, ∴A∪B = {1,3,5,6,7}, 得?U(A∪B)={2,4,8}.答案:{2,4,8}

x 7.定义 A?B={z|z=xy+ ,x∈A,y∈B}.设集合 A={0,2},B={1,2},C={1},则集合(A y ?B)?C 的所有元素之和为________. 解析:由题意可求(A?B)中所含的元素有 0,4,5,则(A?B)?C 中所含的元素有 0,8,10,故 所有元素之和为 18.答案:18 8.若集合{(x,y)|x+y-2=0 且 x-2y+4= x,y)|y=3x+b},则 b=________. ? ? x + y - 2 = 0 , x = 0 , ? ? 解析:由? ?? 点(0,2)在 y=3x+b 上,∴b=2. ?x-2y+4=0. ?y=2. ? ? 9.设全集 I={2,3,a2+2a-3},A={2,|a+1|},?IA={5},M={x|x=log2|a|},则集合 M 的所有子集是________. 解析:∵A∪(?IA)=I,∴{2,3,a2+2a-3}={2,5,|a+1|},∴|a+1|=3,且 a2+2a-3 =5,解得 a=-4 或 a=2,∴M={log22,log2|-4|}={1,2}. 答案:?,{1},{2},{1,2} 10.设集合 A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}. (1)若 A∩B={2},求实数 a 的值; (2)若 A∪B=A,求实数 a 的取值范围. 解:由 x2-3x+2=0 得 x=1 或 x=2,故集合 A={1,2}. (1)∵A∩B={2},∴2∈B,代入 B 中的方程,得 a2+4a+3=0?a=-1 或 a=-3;当 a=-1 时, B={x|x2-4=0}={-2,2}, 满足条件; 当 a=-3 时, B={x|x2-4x+4=0}={2}, 满足条件;综上,a 的值为-1 或-3. (2)对于集合 B,Δ=4(a+1)2-4(a2-5)=8(a+3).∵A∪B=A,∴B?A, ①当 Δ<0,即 a<-3 时,B=?满足条件;②当 Δ=0,即 a=-3 时,B={2}满足条件; ③当 Δ>0,即 a>-3 时,B=A={1,2}才能满足条件,则由根与系数的关系得 5 ? ?1+2=-2(a+1) ?a=-2, ? ? ?? 矛盾.综上,a 的取值范围是 a≤-3. 2 ?1×2=a -5 ? 2 ? ?a =7, 11.已知函数 f(x)= 6 -1的定义域为集合 A,函数 g(x)=lg(-x2+2x+m)的定义域为 x+1

集合 B. (1)当 m=3 时,求 A∩(?RB); (2)若 A∩B={x|-1<x<4},求实数 m 的值. 解:A={x|-1<x≤5}. (1)当 m=3 时,B={x|-1<x<3},则?RB={x|x≤-1 或 x≥3}, ∴A∩(?RB)={x|3≤x≤5}. (2)∵A={x|-1<x≤5},A∩B={x|-1<x<4}, ∴有-42+2×4+m=0,解得 m=8,此时 B={x|-2<x<4},符合题意. 12.已知集合 A={x∈R|ax2-3x+2=0}. (1)若 A=?,求实数 a 的取值范围; (2)若 A 是单元素集,求 a 的值及集合 A; (3)求集合 M={a∈R|A≠?}. 解:(1)A 是空集,即方程 ax2-3x+2=0 无解. 2 若 a=0,方程有一解 x= ,不合题意. 3 9 2 若 a≠0,要方程 ax -3x+2=0 无解,则 Δ=9-8a<0,则 a> . 8 9 综上可知,若 A=?,则 a 的取值范围应为 a> . 8 2 2 (2)当 a=0 时,方程 ax2-3x+2=0 只有一根 x= ,A={ }符合题意. 3 3 9 当 a≠0 时,则 Δ=9-8a=0,即 a= 时, 8

4 4 方程有两个相等的实数根 x= ,则 A={ }. 3 3 2 9 4 综上可知,当 a=0 时,A={ };当 a= 时,A={ }. 3 8 3 2 (3)当 a=0 时,A={ }≠?.当 a≠0 时,要使方程有实数根, 3 9 则 Δ=9-8a≥0,即 a≤ . 8 9 9 综上可知,a 的取值范围是 a≤ ,即 M={a∈R|A≠?}={a|a≤ } 8 8


相关文档

更多相关文档

高考文科数学一轮复习专题1:集合
高中文科数学一轮复习1.1集合
高中文科数学 第1章集合复习学案1
高中文科数学总复习 集合的概念与运算
2014高考文科数学第一轮复习各专题汇总习题集及答案
2015年高中数学步步高大一轮复习讲义(文科)第一章 易错题目辨析练——集合与常用逻辑用语
2015年高中数学步步高大一轮复习讲义(文科)第1讲 集合的概念和运算
2015年高中数学步步高大一轮复习讲义(文科)第三章 专题一
2015年高中数学步步高大一轮复习讲义(文科)第五章 专题二
2015年高中数学步步高大一轮复习讲义(文科)第六章 专题三
2016年高考文科数学一轮复习模拟试题集精讲资料
2016届 数学 (文科)一轮复习 第一章 集合与逻辑用语数 第2讲 命题及其关系、充分条件与必要条件
2016届 数学 (文科)一轮复习 第一章 集合与逻辑用语数 第1讲 集合及其运算
高三文科数学一轮复习之集合
2016届新课标高考数学文科大一轮复习讲义-第1章 集合与常用逻辑用语
电脑版