必修三2.4 线性回归方程(1)


思考下列问题:
两个变量之间的常见关系有几种? (1)确定性的函数关系,变量之间的关系可以用函数表示. (2)相关关系,变量之间有一定的联系,但不能完全用函数来表示.

1.球的体积和球的半径具有( A.函数关系 C.不确定关系

B.相关关系 D.无任何关系

A)

2.下列两个变量之间的关系不是函数关系的是(

D)

A.角的度数和正弦值
B.速度一定时,距离和时间的关系 C.正方体的棱长和体积

D.日照时间和水稻的亩产量

探究

气温和热茶卖出 去的杯数有什么 样的关系?

某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作 了某6天卖出热茶的杯数与当天气温的对照表:

气温 杯数

26 20

18 24

13 34

10 38

4 50

-1 64

气 温 杯 数

26

18

13

10

4

-1 y

20

24

34

38

50

64

F
60 50 40 30 20 10 -5 0 5 15 25 35

为了了解热茶销

售与气温的大致关系, 我们以横坐标x表示气 你发现这 温,纵坐标y表示热茶 些点有什 销量,建立平面直角坐 么规律? 标系,将表中数据构成

E

D

C B A

的6个数对所表示的点
在坐标系中标出, 得到如下散点图:

x

答:都分布在同一条直线的附近.
?

象这样能用直线方程 们把它称为线性相关关系.

来表示两个变量之间的相关关系我 y ? bx ?a

某小卖部为了了解热茶销售量与气温之间的系, 随机统计并制作了某6天卖出热茶的杯数与当天气 温的对照表:
气温 杯数 26 20 18 24 13 34 10 38 4 50 -1 64

如果某天的气温是-50C,你能根据这些数据预测这天小卖部卖处热茶 的杯数吗?

x y

x1 y1

x2 y2

x3 y3

… …

xn yn

若上面数据满足线性相关关系,那么

y ? bx ? a
n

?

则称为这n个数据的线性回归方程.
其中

b ?

n ? xi yi ?
i ?1

n

?x ?y
i ?1 i i ?1 n 2

n

i

n ? xi
i ?1

n

2

? ? ? ? ? xi ? ? i ?1 ?

a ? y? b x

?

?


相关文档

更多相关文档

6[1].4.2线性回归方程课件(苏教版必修3)
苏教版必修三 2.4.2线性回归方程(1) 教案
必修三2.4 线性回归方程(2)
苏教版高中数学必修3 2.4 线性回归方程(1)
【数学】2.4《线性回归方程》测试(苏教版必修3)
6.4.2线性回归方程课件(苏教版必修3)
6.4线性回归方程课件1(苏教版必修3)
必修三第2章第4节+线性回归方程
2.3.1线性回归方程(1)
2.3.1线性回归方程(1)课件必修3
6.4线性回归方程课件(苏教版必修3)
高一数学必修3线性回归方程的应1用
2.3.1线性回归方程(1)
苏教版高中数学必修三 第26课时6.4.2线性回归方程(2)
苏教版高中数学必修三 第25课时6.4.1线性回归方程(1)
电脑版