11-12学年高中数学


选修 2-3
班别:
一、选择题

2.3.3 离散型随机变量的均值与方差测练题
学号: 姓名:

1.已知随机变量 X 的分布列是

X P
则 E(X)和 D(X)分别等于( A.1 和 0 B.1 和 1.8 )

1 0.4

2 0.2

3 0.4

C.2 和 2

D.2 和 0.8

2.已知随机变量 X 的分布列为

X P
且 η =2X+3,且 E(η )等于( A. 3 5 B. 6 5 21 C. 5 )

0 7 15

1 7 15

2 1 15

D.

12 5

3.某人从家乘车到单位,途中有 3 个交通岗.假设在各交通岗遇到红灯的事件是相互独 立的,且概率都是 0.4,则此人上班途中遇红灯次数的均值为( A.0.4 4.已知 X 的分布列为 B.1.2 C.0.4
3

)

D.0.6

X P
则 D(X)的值为( A. 29 12 ) B. 121 144

1 1 4

2 1 3

3 1 6

4 1 4

179 C. 144

D.

17 12

5.已知 X 的分布列为

X P

-1 1 2

0 1 3

1 1 6

若 η =2X+2,则 D(η )的值为( 1 A.- 3 B. 5 9

) 10 C. 9
-1-

D.

20 9

6.从学校乘汽车到火车站的途中有 3 个交通岗,假设在各个交通岗遇到红灯的事件是相 2 互独立的,并且概率都是 ,设 X 为途中遇到红灯的次数,则随机变量 X 的方差为( 5 A. 6 5 B. 18 25 C. 6 25 D. 18 125 )

7.已知 X 服从二项分布 B(n,p),且 E(3X+2)=9.2,D(3X+2)=12.96,则二项分布的 参数 n、p 的值为( A.n=4,p=0.6 ) B.n=6,p=0.4 C.n=8,p=0.3 D.n=24,p=0.1

8.甲、乙、丙三名射箭运动员在某次测试中各射箭 20 次,三人的测试成绩如下表 甲的成绩 环数 频数 7 5 8 5 9 5 10 5

乙的成绩 环数 频数 7 6 8 4 9 4 10 6

丙的成绩 环数 频数 7 4 8 6 9 6 10 4 )

s1、s2、s3 分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有(
A.s3>s1>s2 二、填空题 B.s2>s1>s3 C.s1>s2>s3 D.s2>s3>s1

9.牧场的 10 头牛,因误食疯牛病毒污染的饲料被感染,已知该病的发病率为 0.02,设 发病牛的头数为 X,则 D(X)等于________. 10.(2010·福州)设有 m 升水,其中含有 n 个大肠杆菌,今任取 1 升水检验,设其中含 大肠杆菌的个数为 X,则 E(X)=________. 11. 某次考试中, 第一大题由 12 个选择题组成, 每题选对得 5 分, 不选或选错得 0 分. 小 王选对每题的概率为 0.8,则其第一大题得分的均值为________. 12.若 X 的分布列如下表:

X P

1 1 4

2 1 4

3 1 4

4 1 4

?1 ? 则 D? X?=________. ?4 ?
-2-

三、解答题 13. 一名工人要看管三台机床, 在一小时内机床不需要工人照顾的概率对于第一台是 0.9, 第二台是 0.8,第三台是 0.85,求在一小时的过程中不需要工人照顾的机床的台数 X 的数学 期望(均值).

14.为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产 1 1 1 业建设工程三类.这三类工程所含项目的个数分别占总数的 , , .现有 3 名工人独立地从 2 3 6 中任选一个项目参与建设. (1)求他们选择的项目所属类别互不相同的概率; (2)记 ξ 为 3 人中选择的项目属于基础设施工程或产业建设工程的人数,求 ξ 的分布列 及均值.

-3-

15.袋中有 20 个大小相同的球,其中记上 0 号的有 10 个,记上 n 号的有 n 个(n= 1,2,3,4).现从袋中任取一球,ξ 表示所取球的标号. (1)求 ξ 的分布列、均值和方差; (2)若 η =aξ +b,E(η )=1,D(η )=11,试求 a,b 的值.

16.(2010·湖南理,17)下图是某城市通过抽样得到的居民某年的月均用水量(单位:吨) 的频率分布直方图. (1)求直方图中 x 的值; (2)若将频率视为概率, 从这个城市随机抽取 3 位居民(看作有放 回的抽样),求月均用水量在 3 至 4 吨的居民数 X 的分布列和数学期 望(均值).

-4-


相关文档

更多相关文档

高中数学2-3-3离散型随机变量的均值与方差习题课课件新人教A版选修
高中数学人教A版选修2-3同步课件2.3.3离散型随机变量的均值与方差习题课
11-12学年高中数学 2.3.1 离散型随机变量的均值课件 新人教A版选修2-3
2016年秋季学期新苏教版高中数学选修2-3 2.5 离散型随机变量的均值与方差同步练习
【2014-2015学年高中数学(人教A版,选修2-3)练习:2.3.3 离散型随机变量的均值与方差习题课
高中数学人教版选修2-3同步练习:2.3.2《离散型随机变量的均值与方差》
【2014-2015学年高中数学(人教A版,选修2-3)备选练习:2.3.3离散型随机变量的均值与方差习题课
高中数学人教版选修2-3同步练习:2.3.1《离散型随机变量的均值与方差》
【成才之路】2014-2015学年高中数学(人教A版,选修2-3)练习:2.3.3 离散型随机变量的均值与方差习题课]
2014-2015学年高中数学 第2章 离散型随机变量均值与方差(二)同步练习 北师大版选修2-3
高中数学人教版选修2-3同步练习:2.3.1《离散型随机变量的均值与方差》
高中数学人教版选修2-3同步练习:2.3.2《离散型随机变量的均值与方差》
高中数学选修2-3(人教A版)第二章随机变量及其分布知识点总结含同步练习及答案
第一轮复习理科数学教师用书配套习题:课时提升作业(七十) 10.9离散型随机变量的均值与方差 Word版含答案
选修2-3 2.3.1离散型随机变量的均值和方差
电脑版