高中数学知识点总结(最全版)


高中数学 必修 1 知识点 第一章 函数概念 (1)函数的概念 ①设 A 、 B 是两个非空的数集,如果按照某种对应法则 f ,对于集合 A 中任何一个数 x ,在集合 B 中 都有唯一确定的数 f ( x) 和它对应,那么这样的对应(包括集合 A , B 以及 A 到 B 的对应法则 f )叫做集 合 A 到 B 的一个函数,记作 f : A ? B . ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设 a , b 是两个实数,且 a ? b ,满足 a ? x ? b 的实数 x 的集合叫做闭区间,记做 [ a, b] ;满足

a ? x ? b 的实数 x 的集合叫做开区间,记做 ( a, b) ;满足 a ? x ? b ,或 a ? x ? b 的实数 x 的集合叫做半
开 半 闭 区 间 , 分 别 记 做 [ a, b) , ( a, b] ; 满 足 x ? a, x ? a, x ? b, x ? b 的 实 数 x 的 集 合 分 别 记 做

[a, ??),(a, ??),(??, b],(??, b) .
注意:对于集合 {x | a ? x ? b} 与区间 ( a, b) ,前者 a 可以大于或等于 b ,而后者必须

a ? b ,(前者可以不成立,为空集;而后者必须成立).
(3)求函数的定义域时,一般遵循以下原则: ① f ( x) 是整式时,定义域是全体实数. ② f ( x) 是分式函数时,定义域是使分母不为零的一切实数. ③ f ( x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1. ⑤ y ? tan x 中, x ? k? ?

?
2

(k ? Z ) .

⑥零(负)指数幂的底数不能为零. ⑦若 f ( x) 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的 定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知 f ( x) 的定义域为 [ a, b] ,其复合函数 f [ g ( x)] 的 定义域应由不等式 a ? g ( x) ? b 解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个 最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问 的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.

②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的 值域或最值. ③ 判 别 式 法 : 若 函 数 y ? f ( x) 可 以 化 成 一 个 系 数 含 有 y 的 关 于 x 的 二 次 方 程

a( y) x2 ? b( y) x ? c( y) ? 0
则在 a( y ) ? 0 时,由于 x, y 为实数,故必须有 ? ? b2 ( y) ? 4a( y) ? c( y) ? 0 ,从而确定函数的值域或最 值. ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三 角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量乊间的对应关系.列表法:就是列出表格来表示两个变量乊 间的对应关系.图象法:就是用图象表示两个变量乊间的对应关系. (6)映射的概念 ①设 A 、 B 是两个集合,如果按照某种对应法则 f ,对于集合 A 中任何一个元素,在集合 B 中都有唯 一的元素和它对应,那么这样的对应(包括集合 A , B 以及 A 到 B 的对应法则 f )叫做集合 A 到 B 的映 射,记作 f : A ? B . ②给定一个集合 A 到集合 B 的映射,且 a ? A, b ? B .如果元素 a 和元素 b 对应,那么我们把元素 b 叫 做元素 a 的象,元素 a 叫做元素 b 的原象. (6)函数的单调性 ①定义及判定方法 函数 的 性 质 如果对于属于定义 域 I 内某个区间上的任意 两个自变量的值 x1、x2, 当 x 1 < 2 . . 时 , 都 有 . . x . f(x 1 )<f(x 2 ),那么就说 f(x) . . . . . . . . . . . 在这个区间上是增 .函 . 数 . . (1)利用定 义 (2)利用已 知函数的单调性 (3)利用函 数图象(在某个区 间图 象 上 升 为 增) (4)利用复 合函数 定义 图象 判定方法

函数 的 单调 性

y y=f(X)
f(x1 )

f(x2)

o

x1

x2

x

第 - 2 - 页 共 19 页

(1)利用定 如果对于属于定义 域 I 内某个区间上的任意 两个自变量的值 x1、x2, 当 x 1 < 2 . . 时 , 都 有 . . x . f(x 1 )>f(x 2 ),那么就说 f(x) . . . . . . . . . . . 在这个区间上是减 .函 . 数 . . 义 (2)利用已 知函数的单调性 (3)利用函 数图象(在某个区 间图 x 象下降为减) (4)利用复 合函数

y
f(x )
1

y=f(X)
f(x )
2

o

x1

x2

②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为 增函数,减函数减去一个增函数为减函数. ③对于复合函数 y ? f [ g ( x)] ,令 u ? g ( x) ,若 y ? f (u ) 为增, u ? g ( x) 为增,则 y ? f [ g ( x)] 为 增 ; 若 y ? f (u ) 为 减 , u ? g ( x) 为 减 , 则 y ? f [ g ( x)] 为 增 ; 若 y ? f (u ) 为 增 , u ? g ( x) 为 减 , 则

y ? f [ g ( x)] 为减;若 y ? f (u ) 为减, u ? g ( x) 为增,则 y ? f [ g ( x)] 为减.
(7)打“√”函数 f ( x ) ? x ?

a ( a ? 0) 的图象与性质 x

y

f ( x) 分别在 (??, ? a ] 、 [ a , ??) 上为增函数,分别
在 [? a ,0) 、 (0, a ] 上为减函数. (8)最大(小)值定义 ①一般地,设函数 y ? f ( x) 的定义域为 I ,如果存在实 数 M 满足:(1)对于任意的 x ? I ,都有 f ( x) ? M ; ( 2 )存在 x0 ? I ,使得 f ( x0 ) ? M .那么,我们称
o
x

M 是函数 f ( x) 的最大值,记作 f max ( x) ? M .
②一般地,设函数 y ? f ( x) 的定义域为 I ,如果存在实数 m 满足:( 1 )对于任意的 x ? I ,都有

f ( x) ? m ; ( 2 ) 存 在 x0 ? I , 使 得 f ( x0 ) ? m . 那 么 , 我 们 称 m 是 函 数 f ( x) 的 最 小 值 , 记 作

f max ( x) ? m .
(9)函数的奇偶性 ①定义及判定方法 函数 的 性 质 定义 图象 判定方法

第 - 3 - 页 共 19 页

如果对于函数 f(x)定 义域内任意一个 x,都有 f( - - , 那 么函 数 . . .x)= . . . .f(x) . . . . f(x)叫做奇函数 . ... 函数 的 奇偶 性 如果对于函数 f(x)定 义域内任意一个 x,都有 f( - x)= f(x) ,那么函数 f(x) . . . . . . . . . . 叫做偶函数 . ...

(1)利用定 义(要先判断定义 域是否关于原点对 称) (2)利用图 象(图象关于原点 对称) (1)利用定 义(要先判断定义 域是否关于原点对 称) (2)利用图 象(图象关于 y 轴 对称)

②若函数 f ( x) 为奇函数,且在 x ? 0 处有定义,则 f (0) ? 0 . ③奇函数在 y 轴两侧相对称的区间增减性相同,偶函数在 y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数 (或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数 【2.1.1】指数与指数幂的运算 (1)根式的概念 ①如果 x ? a, a ? R, x ? R, n ? 1 ,且 n ? N ? ,那么 x 叫做 a 的 n 次方根.当 n 是奇数时, a 的 n 次方
n

根用符号 n a 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号 n a 表示,负的 n 次方根用符号 ? n a 表 示;0 的 n 次方根是 0;负数 a 没有 n 次方根. ②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当 n 为奇数时, a 为任意实数;当 n 为偶 数时, a ? 0 . ③ 根 式 的 性 质 : ( n a )n ? a ; 当 n 为 奇 数 时 ,
n

n

an ? a ; 当 n 为 偶 数 时 ,

(a ? 0) ?a . a n ?| a |? ? ??a (a ? 0)
m n

(2)分数指数幂的概念 ①正数的正分数指数幂的意义是: a ? a m (a ? 0, m, n ? N? , 且 n ? 1) .0 的正分数指数幂等于 0.
n

②正数的负分数指数幂的意义是: a

?

m n

1 m 1 ? ( ) n ? n ( )m (a ? 0, m, n ? N? , 且 n ? 1) .0 的负分数指数 a a

幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① a ?a ? a
r s r ?s

(a ? 0, r, s ? R)

② (a ) ? a (a ? 0, r, s ? R)
r s rs

第 - 4 - 页 共 19 页

③ (ab)r ? ar br (a ? 0, b ? 0, r ? R) 【2.1.2】指数函数及其性质 (4)指数函数 函数名称 定义 指数函数 函数 y ? a x (a ? 0 且 a ? 1) 叫做指数函数

a ?1

0 ? a ?1

y
图象

y ? ax

y ? ax

y

y?1
(0,1)

y?1

(0,1)

O
定义域 值域 过定点 奇偶性 单调性

1

x 0

O

1
x 0

R
(0, ??)
图象过定点 (0,1) ,即当 x ? 0 时, y ? 1 . 非奇非偶 在 R 上是增函数 在 R 上是减函数

a x ? 1 ( x ? 0)
函数值的 变化情况

a x ? 1 ( x ? 0) a x ? 1 ( x ? 0) a x ? 1 ( x ? 0)

a x ? 1 ( x ? 0) a x ? 1 ( x ? 0)

a 变化对 图 象 的
影响 〖2.2〗对数函数 【2.2.1】对数与对数运算 (1)对数的定义

在第一象限内, a 越大图象越高;在第二象限内, a 越大图象越低.

①若 a ? N (a ? 0, 且a ? 1) ,则 x 叫做以 a 为底 N 的对数,记作 x ? log a N ,其中 a 叫做底数, N 叫
x

做真数. ②负数和零没有对数. ③对数式与指数式的互化: x ? loga N ? a x ? N (a ? 0, a ? 1, N ? 0) . (2)几个重要的对数恒等式

log a 1 ? 0 , log a a ? 1, log a ab ? b .
(3)常用对数与自然对数 常用对数: lg N ,即 log10 N ;自然对数: ln N ,即 log e N (其中 e ? 2.71828 ?).
第 - 5 - 页 共 19 页

(4)对数的运算性质

如果 a ? 0, a ? 1, M ? 0, N ? 0 ,那么 ②减法: log a M ? log a N ? log a ④a
log a N

①加法: loga M ? loga N ? loga (MN ) ③数乘: n loga M ? loga M n (n ? R)
n ⑤ log ab M ?

M N

?N

n log a M (b ? 0, n ? R) b

⑥换底公式: log a N ?

logb N (b ? 0, 且b ? 1) logb a

【2.2.2】对数函数及其性质 (5)对数函数 函数 名称 定义 对数函数 函数 y ? log a x(a ? 0 且 a ? 1) 叫做对数函数

a ?1

0 ? a ?1
x?1

y
图象

y ? loga x

y

x?1

y ? loga x

O

1

(1, 0)

0

x

O

(1, 0) 1 0

x

定义域 值域 过定点 奇偶性 单调性

(0, ??)

R
图象过定点 (1, 0) ,即当 x ? 1 时, y ? 0 . 非奇非偶 在 (0, ??) 上是增函数 在 (0, ??) 上是减函数

log a x ? 0 ( x ? 1)
函数值的 变化情况

log a x ? 0 ( x ? 1) log a x ? 0 ( x ? 1) log a x ? 0 (0 ? x ? 1)

log a x ? 0 ( x ? 1) log a x ? 0 (0 ? x ? 1)

a 变化对 图 象 的
影响 (6)反函数的概念

在第一象限内, a 越大图象越靠低;在第四象限内, a 越大图象越靠 高.

设函数 y ? f ( x) 的定义域为 A ,值域为 C ,从式子 y ? f ( x) 中解出 x ,得式子 x ? ? ( y ) .如果对于 y 在 C 中的任何一个值,通过式子 x ? ? ( y ) , x 在 A 中都有唯一确定的值和它对应,那么式子 x ? ? ( y ) 表示

x 是 y 的函数,函数 x ? ? ( y ) 叫做函数 y ? f ( x) 的反函数,记作 x ? f ?1 ( y) ,习惯上改写成 y ? f ?1 ( x) .
第 - 6 - 页 共 19 页

(7)反函数的求法 ①确定反函数的定义域,即原函数的值域;②从原函数式 y ? f ( x) 中反解出 x ? f ?1 ( y) ; ③将 x ? f ?1 ( y) 改写成 y ? f ?1 ( x) ,并注明反函数的定义域. (8)反函数的性质 ①原函数 y ? f ( x) 与反函数 y ? f ?1 ( x) 的图象关于直线 y ? x 对称. ②函数 y ? f ( x) 的定义域、值域分别是其反函数 y ? f ?1 ( x) 的值域、定义域. ③若 P (a, b) 在原函数 y ? f ( x) 的图象上,则 P ' (b, a) 在反函数 y ? f ?1 ( x) 的图象上. ④一般地,函数 y ? f ( x) 要有反函数则它必须为单调函数. 〖2.3〗幂函数 (1)幂函数的定义 一般地,函数 y ? x 叫做幂函数,其中 x 为自变量, ? 是常数.
?

(2)幂函数的图象

(3)幂函数的性质 ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第 一、二象限(图象关于 y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数 时,图象只分布在第一象限. ②过定点:所有的幂函数在 (0, ??) 都有定义,并且图象都通过点 (1,1) . ③单调性:如果 ? ? 0 ,则幂函数的图象过原点,并且在 [0, ??) 上为增函数.如果 ? ? 0 ,则幂函数的图
第 - 7 - 页 共 19 页

象在 (0, ??) 上为减函数,在第一象限内,图象无限接近 x 轴与 y 轴. ④奇偶性:当 ? 为奇数时,幂函数为奇函数,当 ? 为偶数时,幂函数为偶函数.当 ? ?
q p

q (其中 p, q 互 p
q p

质, p 和 q ? Z ),若 p 为奇数 q 为奇数时,则 y ? x 是奇函数,若 p 为奇数 q 为偶数时,则 y ? x 是偶函 数,若 p 为偶数 q 为奇数时,则 y ? x 是非奇非偶函数. ⑤ 图 象 特 征 : 幂 函 数 y ? x? , x ? (0, ??) , 当 ? ? 1 时 , 若 0 ? x ? 1 , 其 图 象 在 直 线 y ? x 下 方 , 若
q p

x ? 1 ,其图象在直线 y ? x 上方,当 ? ? 1 时,若 0 ? x ? 1 ,其图象在直线 y ? x 上方,若 x ? 1 ,其图象在直
线 y ? x 下方. 〖补充知识〗二次函数 (1)二次函数解析式的三种形式 ① 一 般 式 : f ( x) ? ax2 ? bx ? c(a ? 0) ② 顶 点 式 : f ( x) ? a( x ? h)2 ? k (a ? 0) ③ 两 根 式 :

f ( x) ? a( x ? x1 )( x ? x2 )(a ? 0) (2)求二次函数解析式的方法
①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与 x 轴有两个交点,且横线坐标已知时,选用两根式求 f ( x) 更方便. (3)二次函数图象的性质
2 ① 二 次 函 数 f ( x) ? ax ? bx ? c(a ? 0) 的 图 象 是 一 条 抛 物 线 , 对 称 轴 方 程 为 x ? ?

b , 顶点坐标是 2a

(?

b 4ac ? b 2 , ). 2a 4a
②当 a ? 0 时,抛物线开口向上,函数在 ( ??, ?

b b b ] 上递减,在 [ ? , ?? ) 上递增,当 x ? ? 时, 2a 2a 2a

f min ( x) ?

4ac ? b 2 b b ] 上递增,在 [ ? , ?? ) 上递减,当 ;当 a ? 0 时,抛物线开口向下,函数在 ( ??, ? 2a 2a 4a

4ac ? b 2 b x?? 时, f max ( x) ? . 2a 4a
2 2 ③ 二 次 函 数 f ( x) ? ax ? bx ? c(a ? 0) 当 ? ? b ? 4ac ? 0 时 , 图 象 与 x 轴 有 两 个 交 点

M1 ( x1 ,0), M 2 ( x2 ,0),| M1M 2 |?| x1 ? x2 |?
2

? . |a|

(4)一元二次方程 ax ? bx ? c ? 0(a ? 0) 根的分布 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系 统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合
第 - 8 - 页 共 19 页

二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程 ax 2 ? bx ? c ? 0(a ? 0) 的两实根为 x1 , x2 ,且 x1 ? x2 .令 f ( x) ? ax2 ? bx ? c ,从以 下四个方面来分析此类问题:①开口方向: a ②对称轴位置: x ? ? ①k<x1≤x2

?
y
a?0

b ③判别式: ? ④端点函数值符号. 2a

y
f (k ) ? 0
?

x??

b 2a

O

k x1
x??

k
x2
b 2a

O

x

?

x1

x2 x
a?0

f (k ) ? 0

②x1≤x2<k

?
y
f (k ) ? 0
?

y
a?0
O

x??
O

b 2a

x1

x2

k x
b 2a

k
x2
?

x1
a?0

x

x??

f (k ) ? 0

③x1<k<x2

?
a?0

af(k)<0

y

y
?

f (k ) ? 0 x2 x
a?0

O

k
?

x1

x2

x

x1

O

k

f (k ) ? 0

④k1<x1≤x2<k2

?
a?0

y
? ?

y

f ( k1 ) ? 0 f ( k ) ? 0 2 x1 x2 k2 x
O

x??

b 2a

O k 1

k1
?

x1

x2

k2
?

x

x??

b 2a

f ( k1 ) ? 0 a?0

f (k 2 ) ? 0

⑤有且仅有一个根 x1(或 x2)满足 k1<x1(或 x2)<k2 f(k2)=0 这两种情况是否也符合

?

f(k1)f(k2) ? 0,并同时考虑 f(k1)=0 或

第 - 9 - 页 共 19 页

y
?

a?0

y
f ( k1 ) ? 0
?

f ( k1 ) ? 0 x1 k2
?

O k 1

x2

x

O

x1 k 1
a?0

x2

k2

?

x

f (k 2 ) ? 0

f (k 2 ) ? 0

⑥k1<x1<k2≤p1<x2<p2 此结论可直接由⑤推出.

?

(5)二次函数 f ( x) ? ax2 ? bx ? c(a ? 0) 在闭区间 [ p, q ] 上的最值 设 f ( x) 在区间 [ p, q ] 上的最大值为 M ,最小值为 m ,令 x0 ? (Ⅰ)当 a ? 0 时(开口向上) ①若 ?

1 ( p ? q) . 2
③若 ?

b ? p ,则 m ? f ( p) 2a
a?0

②若 p ? ?

b b ? q ,则 m ? f ( ? ) 2a 2a

b ? q ,则 m ? f (q) 2a

yx ? ? b f (q) p
O

2a

a?0

y

x??

f (p) q
x

b 2a

a?0

y

x??

f (q)
O
f (? b ) 2a

f (p) q
x

b 2a

q p
O

f
b ? x0 ,则 M ? f (q) 2a
b f ((p) ? ) 2a

p

x
b ) 2a

f f (? (q)

①若 ?

②?

a?0

yx ? ? b f
O

b ? x0 ,则 M ? f ( p) 2a y b a?0
x??

2a

f (p) x0 ? p (q) q
O

2a

x(q) 0 p ?

q

x

x
b ) 2a

f
(Ⅱ)当 a ? 0 时(开口向下) ①若 ?
b f ((p) ? ) 2a

f f (?

b ? p ,则 M ? f ( p) 2a

②若 p ? ?

b b ? q ,则 M ? f (? ) 2a 2a

③若 ?

b ? q ,则 M ? f (q) 2a
f (?

a?0

f (?

yb
2a

)

a?0

f (?

yb
2a

a?0
)

yb f 2a )

f (p)
O

f q (p)
x
O

(q) q p
x
O

p
b x ? ?(q) 2a

p
b x ? ?(q) 2a

q
x?? b 2a

x

f

f (p)

f

第 - 10 - 页 共 19 页

①若 ?

b ? x0 ,则 m ? f (q) 2a
a?0
f (?

②?

b ? x0 ,则 m ? f ( p) . 2a
a?0
f (?

yb
2a

)

f (p)

yb f 2a )

(q)
x0 ? O p
b x ? ?(q) 2a

q
x

x0 p ?

O

q
x?? b 2a

f (p)

x

f

第三章 函数的应用 一、方程的根与函数的零点 1 、 函 数 零 点 的 概 念 : 对 于 函 数 y ? f ( x)(x ? D) , 把 使 f ( x) ? 0 成 立 的 实 数 x 叫 做 函 数

y ? f ( x)(x ? D) 的零点。
2、函数零点的意义:函数 y ? f ( x) 的零点就是方程 f ( x) ? 0 实数根,亦即函数 y ? f ( x) 的图象 与 x 轴交点的横坐标。即: 方程 f ( x) ? 0 有实数根 ? 函数 y ? f ( x) 的图象与 x 轴有交点 ? 函数 y ? f ( x) 有零点. 3、函数零点的求法: 求函数 y ? f ( x) 的零点: 1 ○ 2 ○ (代数法)求方程 f ( x) ? 0 的实数根; (几何法)对于不能用求根公式的方程,可以将它与函数 y ? f ( x) 的图象联系起来,并利用

函数的性质找出零点. 4、二次函数的零点: 二次函数 y ? ax ? bx ? c(a ? 0) .
2

1)△>0,方程 ax ? bx ? c ? 0 有两不等实根,二次函数的图象与 x 轴有两个交点,二次函数
2

有两个零点. 2)△=0,方程 ax ? bx ? c ? 0 有两相等实根(二重根),二次函数的图象与 x 轴有一个交
2

点,二次函数有一个二重零点或二阶零点. 3)△<0,方程 ax ? bx ? c ? 0 无实根,二次函数的图象与 x 轴无交点,二次函数无零点.
2

高中数学 必修 4 知识点 第一章 三角函数 1 、角 ? 的顶点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 ? 为第几象限 角. 第一象限角的集合为 ? k ? 360 ? ? ? k ? 360 ? 90 , k ? ?
? ? ?

?

?

第 - 11 - 页 共 19 页

? ? 第三象限角的集合为 ?? k ? 360 ? 180 ? ? ? k ? 360 ? 270 , k ? ?? 第四象限角的集合为 ?? k ? 360 ? 270 ? ? ? k ? 360 ? 360 , k ? ?? 终边在 x 轴上的角的集合为 ?? ? ? k ?180 , k ? ?? 终边在 y 轴上的角的集合为 ?? ? ? k ?180 ? 90 , k ? ?? 终边在坐标轴上的角的集合为 ?? ? ? k ? 90 , k ? ?? 2、与角 ? 终边相同的角的集合为 ?? ? ? k ? 360 ? ? , k ? ??
第二象限角的集合为 ? k ? 360 ? 90 ? k ? 360 ? 180 , k ? ?
? ? ? ? ? ? ? ? ? ? ? ?
?

?

?

?

?

3、长度等于半径长的弧所对的圆心角叫做 1弧度. 4、半径为 r 的圆的圆心角 ? 所对弧的长为 l ,则角 ? 的弧度数的绝对值是 ? ?
? 5、弧度制与角度制的换算公式: 2? ? 360 , 1 ?
?

l . r

?
180

,1 ? ?

? 180 ? ? ? ? 57.3 . ? ? ?


?

6 、若 扇形的 圆心 角为 ?

??为弧度制? ,半 径为 r , 弧长 为 l ,周 长为 C , 面积 为 S , 则 l ? r ?
y P T v O M A x

C ? 2r ? l , S ?

1 1 lr ? ? r 2 . 2 2

7、设 ? 是一个任意大小的角, ? 的终边上任意一点 ? 的坐标是 ? x, y ? ,它与原点 的距离是 r r ?

?

x 2 ? y 2 ? 0 ,则 sin ? ?

?

y x y , cos ? ? , tan ? ? ? x ? 0 ? . r r x

8、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正. 9、三角函数线: sin ? ? ?? , cos ? ? ?? , tan ? ? ?? . 10. 三 角 函 数 的 基 本 关 系 : ?1? sin
2

? ? cos2 ? ? 1 ? sin 2 ? ? 1 ? cos 2 ? , cos 2 ? ? 1 ? sin 2 ? ? ;

? 2?

sin ? ? tan ? cos ?

sin ? ? ? ? sin ? ? tan ? cos ? , cos ? ? ? ..(3) 倒数关系: tan ? cot ? ? 1 tan ? ? ?

11、函数的诱导公式:

?1? sin ? 2k? ? ? ? ? sin ? , cos ? 2k? ? ? ? ? cos? , tan ? 2k? ? ? ? ? tan ? ? k ??? . ? 2? sin ?? ? ? ? ? ? sin ? , cos ?? ? ? ? ? ? cos? , tan ?? ? ? ? ? tan ? .
?3? sin ? ?? ? ? ? sin ? , cos ? ?? ? ? cos? , tan ? ?? ? ? ? tan ? . ? 4? sin ?? ? ? ? ? sin ? , cos ?? ? ? ? ? ? cos? , tan ?? ? ? ? ? ? tan ? .
口诀:函数名称不变,符号看象限.
第 - 12 - 页 共 19 页

? 5? sin ? ?

? ?? ? ?? ? ?? ? ? ? ? ? cos ? , cos ? ? ? ? ? sin ? . ? 6 ? sin ? ? ? ? ? cos ? , cos ? ? ? ? ? ? sin ? . ?2 ? ?2 ? ?2 ? ?2 ?

?

口诀:正弦与余弦互换,符号看象限. 12 、①的图象上所有点向左(右)平移

? 个单位长度,得到函数 y ? sin ? x ? ? ? 的图象;再将函数
1

y ? sin ? x ? ? ? 的 图 象 上 所 有 点 的 横 坐 标 伸 长 ( 缩 短 ) 到 原 来 的

?

倍(纵坐标不变),得到函数

y ? sin ?? x ? ? ? 的图象;再将函数 y ? sin ?? x ? ? ? 的图象上所有点的纵坐标伸长(缩短)到原来的 ? 倍(横
坐标不变),得到函数 y ? ? sin ?? x ? ? ? 的图象. ②数 y ? sin x 的图象上所有点的横坐标伸长(缩短)到原来的

1

?

倍(纵坐标不变),得到函数

y ? sin ? x 的图象;再将函数 y ? sin ? x 的图象上所有点向左(右)平移

? 个单位长度,得到函数 ?

y ? sin ?? x ? ? ? 的图象;再将函数 y ? sin ?? x ? ? ? 的图象上所有点的纵坐标伸长(缩短)到原来的 ? 倍(横
坐标不变),得到函数 y ? ? sin ?? x ? ? ? 的图象. 13、函数 y ? ? sin ?? x ? ? ?? ? ? 0, ? ? 0? 的性质: ①振幅: ? ;②周期: ? ?

2?

?

;③频率: f ?

1 ? ? ;④相位: ? x ? ? ;⑤初相: ? . ? 2?

函数 y ? ? sin ?? x ? ? ? ? ? ,当 x ? x1 时,取得最小值为 ymin ;当 x ? x2 时,取得最大值为 ymax ,则

??

1 1 ? ? ymax ? ymin ? , ? ? ? ymax ? ymin ? , ? x2 ? x1 ? x1 ? x2 ? . 2 2 2
14、正弦函数、余弦函数和正切函数的图象与性质: 性 函 质 数 y ? sin x

y ? cos x

y ? tan x

y=cotx
y

y=cotx
图 象
-? ? 2

o

? 2

?

3? 2

2?

定 义 域

R

R

? ? ?? ? ? ? x x ? k? ? , k ? ??? x x ? k? ? , k ? ?? 2 2 ? ?? ?

值域

??1,1?

??1,1?
第 - 13 - 页 共 19 页

R

R



x ? 2 k? ?

?
2
时 ; , 当

当 时,

x ? 2k? ? k ???

? k ? ??
最值

ymax ? 1
x ? 2 k? ? ?



当 既无最大值也无最小 值 既无最大值也无最小 值

ymax ? 1
x ? 2 k? ?

?
2
时 ,

? k ? ??
ymin ? ?1.





? k ? ??
ymin ? ?1.
周 期 性 奇 偶 性 在

2?
奇函数

2?
偶函数

?
奇函数

?
奇函数

? ?? ? 2k? ? , 2k? ? ? ? 2 2? ? 在

? k ? ?? 上 是 增
单 调 性 函数;在

?2k? ? ? ,2k? ?? k ???
上 是 增 函 数 ; 在



? 3? ? ? k ? ?? 上 是 增 ? 2 k? ? , 2 k? ? ? ? 2 2 ? ? k ? ?? 上 是 减 函 ? 函数.
数.

?2k? ,2k? ? ? ?

? ?? ? ? k? ? , k? ? ? 2 2? ?

? k ? ?? 上 是 减
函数. 对 称 中 心 对 称 中 心 对 称 中 心 对 称 中 心

? k? ,0?? k ???
对 称 性 对 称 轴

? ? ? ? k? ? , 0 ? ? k ? ? ? 2 ? ?
对 称 轴

x ? k? ?

?
2

?k ? ??

? k? ? , 0 ? ? k ? ?? ? ? 2 ?
无对称轴

? k? ? , 0 ? ? k ? ?? ? ? 2 ?
无对称轴

x ? k? ? k ???

第三章 三角恒等变换 1、两角和与差的正弦、余弦和正切公式: ? cos ?? ? ? ? ? cos? cos ? ? sin ? sin ? ;? cos ?? ? ? ? ? cos? cos ? ? sin ? sin ? ; ? sin ?? ? ? ? ? sin ? cos ? ? cos? sin ? ;? sin ?? ? ? ? ? sin ? cos ? ? cos? sin ? ;
第 - 14 - 页 共 19 页

? tan ?? ? ? ? ?

tan ? ? tan ? ? 1 ? tan ? tan ? tan ? ? tan ? ? 1 ? tan ? tan ?

( tan ? ? tan ? ? tan ?? ? ? ??1 ? tan ? tan ? ? );

? tan ?? ? ? ? ?

( tan ? ? tan ? ? tan ?? ? ? ??1 ? tan ? tan ? ? ).

2、二倍角的正弦、余弦和正切公式: ? sin 2? ? 2sin ? cos ? . ? 1 ? sin 2? ? sin 2 ? ? cos2 ? ? 2 sin ? cos? ? (sin? ? cos? ) 2 ? cos 2? ? cos
2

? ? sin 2 ? ? 2cos2 ? ?1 ? 1 ? 2sin 2 ?
?
,1 ? cos ? ? 2 sin 2

2 2 cos 2? ? 1 1 ? cos 2? 2 , sin ? ? . ? 降幂公式 cos 2 ? ? 2 2 3、合一变形 ?把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 ? y ? A sin(?x ? ? ) ? B 形式。 ? sin ? ? ? cos ? ? ?2 ? ?2 sin ?? ? ? ? ,其中 tan ? ? . ?
数学选修 2-2 导数及其应用 一.导数概念的引入 1. 导数的物理意义: 瞬时速率。一般的,函数 y ? f ( x) 在 x ? x0 处的瞬时变化率是 lim f ( x0 ? ?x) ? f ( x0 ) ,
?x ?0

? 升幂公式 1 ? cos ? ? 2 cos 2

?

?x

我们称它为函数 y ? f ( x) 在 x ? x0 处的导数,记作 f ?( x0 ) 或 y? |x? x0 ,即 f ?( x0 ) = lim f ( x0 ? ?x) ? f ( x0 )
?x ?0

?x

2. 导数的几何意义: 曲线的切线.通过图像,我们可以看出当点 Pn 趋近于 P 时,直线 PT 与曲线相切。容易知道,割线 PPn 的斜 率 是 k ? f ( xn ) ? f ( x0 ) ,当点 Pn 趋 近于 P 时 ,函 数 y ? f ( x) 在 x ? x0 处的 导数就是 切线 PT 的 斜 率 k , 即 n
xn ? x0

k ? lim

?x ?0

f ( xn ) ? f ( x0 ) ? f ?( x0 ) xn ? x0

3.

导函数:当 x 变化时, f ?( x ) 便是 x 的一个函数,我们称它为 f ( x) 的导函数. y ? f ( x) 的导函数有

时也记作 y ? ,即
f ?( x) ? lim f ( x ? ?x) ? f ( x) ?x

?x ?0

二.导数的计算 基本初等函数的导数公式: 1 若 f ( x) ? c (c 为常数),则 f ?( x) ? 0 ; 3 若 f ( x) ? sin x ,则 f ?( x) ? cos x 5 若 f ( x) ? a x ,则 f ?( x) ? a x ln a 2 若 f ( x) ? x? ,则 f ?( x) ? ? x? ?1 ; 4 若 f ( x) ? cos x ,则 f ?( x) ? ? sin x ; 6 若 f ( x) ? ex ,则 f ?( x) ? e x

第 - 15 - 页 共 19 页

x 7 若 f ( x) ? loga ,则 f ?( x) ?

1 x ln a

8 若 f ( x) ? ln x ,则 f ?( x) ? 1 x 2. [ f ( x) ? g ( x)]? ? f ?( x) ? g ( x) ? f ( x) ? g ?( x)

导数的运算法则 1. [ f ( x) ? g ( x)]? ? f ?( x) ? g ?( x) f ( x) f ?( x) ? g ( x) ? f ( x) ? g ?( x) 3. [ ]? ? g ( x) [ g ( x)]2 复合函数求导
y ? f (u ) 和 u ? g ( x) , 称 则

y 可 以 表 示 成 为 x 的 函 数 , 即 y ? f ( g ( x)) 为 一 个 复 合 函 数

y? ? f ?( g ( x)) ? g ?( x)
三.导数在研究函数中的应用 1.函数的单调性与导数: 一般的,函数的单调性与其导数的正负有如下关系: 在某个区间 (a, b) 内 (1)如果 f ?( x) ? 0 ,那么函数 y ? f ( x) 在这个区间单调递增; (2)如果 f ?( x) ? 0 ,那么函数 y ? f ( x) 在这个区间单 调递减. 2.函数的极值与导数 极值反映的是函数在某一点附近的大小情况. 求函数 y ? f ( x) 的极值的方法是 : ( 1 )如果在 x0 附近的左侧 f ?( x) ? 0 , 右侧 f ?( x) ? 0 , 那么 f ( x0 ) 是极大值 (2)如果在 x0 附近的左侧 f ?( x) ? 0 ,右侧 f ?( x) ? 0 ,那么 f ( x0 ) 是极小值; 4.函数的最大(小)值与导数 求函数 y ? f ( x) 在 [a, b] 上的最大值与最小值的步骤: (1)求函数 y ? f ( x) 在 (a, b) 内的极值; (2)将函数 y ? f ( x) 的各极值与端点处的函数值 f (a) , f (b) 比较,其中最大的是一个最大值,最小的是最小值. 附:高中数学常用公式及常用结论. 1.函数的单调性 (1)设 x1 ? x2 ? ?a, b?, x1 ? x2 那么

( x1 ? x2 ) ? f ( x1 ) ? f ( x2 )? ? 0 ? ( x1 ? x2 ) ? f ( x1 ) ? f ( x2 )? ? 0 ?

f ( x1 ) ? f ( x2 ) ? 0 ? f ( x)在?a, b?上是增函数; x1 ? x2 f ( x1 ) ? f ( x2 ) ? 0 ? f ( x)在?a, b? 上是减函数. x1 ? x2

(2)设函数 y ? f ( x) 在某个区间内可导,如果 f ?( x) ? 0 ,则 f ( x) 为增函数;如果 f ?( x) ? 0 ,则 f ( x) 为减 函数. 2. 如果函数 f ( x) 和 g ( x) 都是减函数 , 则在公共定义域内 , 和函数 f ( x) ? g ( x) 也是减函数 ; 如果函数

y ? f (u ) 和 u ? g ( x) 在其对应的定义域上都是减函数,则复合函数 y ? f [ g ( x)] 是增函数.
3.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于 y 轴对称;反过来,如果一个函数的图象关于原点对称,那 么这个函数是奇函数;如果一个函数的图象关于 y 轴对称,那么这个函数是偶函数. 4. 若 函 数 y ? f ( x) 是 偶 函 数 , 则 f ( x ? a) ? f (? x ? a) ; 若 函 数 y ? f ( x ? a) 是 偶 函 数 , 则

第 - 16 - 页 共 19 页

f ( x ? a) ? f ( ? x ? a) .
5.对于函数 y ? f ( x) ( x ? R ), f ( x ? a) ? f (b ? x) 恒成立,则函数 f ( x) 的对称轴是函数 x ? 数 y ? f ( x ? a) 与 y ? f (b ? x) 的图象关于直线 x ?

a?b ;两个函 2

a?b 对称. 2
a 2

6. 若 f ( x) ? ? f (? x ? a) , 则 函 数 y ? f ( x) 的 图 象 关 于 点 ( ,0 ) 对 称 ; 若 f ( x) ? ? f ( x ? a) , 则 函 数

y ? f ( x) 为周期为 2 a 的周期函数.
7.多项式函数 P( x) ? an xn ? an?1 xn?1 ? ?? a0 的奇偶性 多项式函数 P ( x) 是奇函数 ? P ( x) 的偶次项(即奇数项)的系数全为零. 多项式函数 P ( x) 是偶函数 ? P ( x) 的奇次项(即偶数项)的系数全为零. 26.互为反函数的两个函数的关系

f (a) ? b ? f ?1 (b) ? a .
27. 若函数 y ? f (kx ? b) 存在反函数 ,则其反函数为 y ?

1 [f k

?1

( x ) ? b] , 并不是 y ? [ f ?1 (kx ? b) , 而函数

y ? [ f ?1 (kx ? b) 是 y ?

1 [ f ( x ) ? b] 的反函数. k

28.几个常见的函数方程 (1)正比例函数 f ( x) ? cx , f ( x ? y) ? f ( x) ? f ( y), f (1) ? c .
x (2)指数函数 f ( x) ? a , f ( x ? y) ? f ( x) f ( y), f (1) ? a ? 0 .

(3)对数函数 f ( x) ? loga x , f ( xy) ? f ( x) ? f ( y), f (a) ? 1(a ? 0, a ? 1) . (4)幂函数 f ( x) ? x , f ( xy) ? f ( x) f ( y), f (1) ? ? .
?
'

(5)余弦函数 f ( x) ? cos x ,正弦函数 g ( x) ? sin x , f ( x ? y) ? f ( x) f ( y) ? g ( x) g ( y) ,

f (0) ? 1, lim
x ?0

g ( x) ?1. x

29.几个函数方程的周期(约定 a>0) (1) f ( x) ? f ( x ? a) ,则 f ( x) 的周期 T=a; (2) f ( x) ? f ( x ? a) ? 0 ,或 f ( x ? a) ?

1 1 ( f ( x) ? 0) ,或 f ( x ? a) ? ? ( f ( x) ? 0) , f ( x) f ( x)



1 ? 2

f ( x) ? f 2 ( x) ? f ( x ? a ), ( f ( x) ? ?0,1?) ,则 f ( x) 的周期 T=2a;

(3) f ( x) ? 1 ?

1 ( f ( x) ? 0) ,则 f ( x) 的周期 T=3a; f ( x ? a)
第 - 17 - 页 共 19 页

(4) f ( x1 ? x2 ) ?

f ( x1 ) ? f ( x2 ) 且 f (a) ? 1( f ( x1 ) ? f ( x2 ) ? 1,0 ?| x1 ? x2 |? 2a) ,则 f ( x) 的周期 T=4a; 1 ? f ( x1 ) f ( x2 )

(5) f ( x) ? f ( x ? a) ? f ( x ? 2a) f ( x ? 3a) ? f ( x ? 4a)

? f ( x) f ( x ? a) f ( x ? 2a) f ( x ? 3a) f ( x ? 4a) ,则 f ( x) 的周期 T=5a;
(6) f ( x ? a) ? f ( x) ? f ( x ? a) ,则 f ( x) 的周期 T=6a. 30.分数指数幂 (1) a n ?
m

1
n

a

m

( a ? 0, m, n ? N ? ,且 n ? 1 ).

(2) a

?

m n

?

1 a
m n

( a ? 0, m, n ? N ? ,且 n ? 1 ).

32.有理指数幂的运算性质 (1)

ar ? as ? ar ?s (a ? 0, r, s ? Q) . (2) (ar )s ? ars (a ? 0, r, s ? Q) . (3) (ab)r ? ar br (a ? 0, b ? 0, r ? Q) .
p

注: 若 a>0,p 是一个无理数,则 a 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数 幂都适用. 45.同角三角函数的基本关系式

sin 2 ? ? cos2 ? ? 1 , tan ? =
46.正弦、余弦的诱导公式

sin ? , tan ? ? cot? ? 1 . cos ?

n ? 2 ( ? 1) sin ? , n? ? sin( ? ? ) ? ? n ?1 2 ?(?1) 2 co s ? , ?

(n 为偶数) (n 为奇数) (n 为偶数)

? n? ?( ?1) co s ? , co s( ??) ? ? n ?1 2 ?( ?1) 2 sin ? , ?
n 2

(n 为奇数)

47.和角与差角公式

sin(? ? ? ) ? sin ? cos ? ? cos? sin ? ; cos(? ? ? ) ? cos ? cos ? ? sin ? sin ? ;

tan(? ? ? ) ?

tan ? ? tan ? 2 2 . sin(? ? ? )sin(? ? ? ) ? sin ? ? sin ? (平方正弦公式); 1 ? tan ? tan ?

cos(? ? ? )cos(? ? ? ) ? cos2 ? ? sin 2 ? .
a sin ? ? b cos ? = a2 ? b2 sin(? ? ? ) (辅助角 ? 所在象限由点 ( a, b) 的象限决定, tan ? ?
48.二倍角公式

b ). a 2 tan ? . 1 ? tan 2 ?

sin 2? ? sin ? cos ? .
49. 三倍角公式

cos 2? ? cos2 ? ? sin 2 ? ? 2cos2 ? ? 1 ? 1 ? 2sin 2 ? .

tan 2? ?

sin 3? ? 3sin ? ? 4sin 3 ? ? 4sin ? sin( ? ? ) sin( ? ? ) . 3 3
第 - 18 - 页 共 19 页

?

?

cos 3? ? 4 cos3 ? ? 3cos ? ? 4 cos ? cos( ? ? ) cos( ? ? ) 3 3

?

?

.

tan 3? ?

3tan ? ? tan 3 ? ? ? ? tan ? tan( ? ? ) tan( ? ? ) . 2 1 ? 3tan ? 3 3

50.三角函数的周期公式 函数 y ? sin(? x ? ? ) , x ∈ R 及函数 y ? cos(? x ? ? ) , x ∈ R(A, ω , ? 为常数,且 A ≠ 0 ,ω> 0) 的周期

T?

2?

?

;函数 y ? tan(? x ? ? ) , x ? k? ?

?
2

, k ? Z (A,ω, ? 为常数,且 A≠0,ω>0)的周期 T ?

? . ?

51.正弦定理

a b c ? ? ? 2R . sin A sin B sin C
52.余弦定理

a 2 ? b2 ? c 2 ? 2bc cos A ; b2 ? c 2 ? a 2 ? 2ca cos B ; c2 ? a 2 ? b2 ? 2ab cos C .
191. 函数 y ? f ( x) 在点 x0 处的导数的几何意义 函数 y ? f ( x) 在点 x0 处的导数是曲线 y ? f ( x) 在 P( x0 , f ( x0 )) 处的切线的斜率 f ?( x0 ) ,相应的切线方程 是 y ? y0 ? f ?( x0 )(x ? x0 ) . 192.几种常见函数的导数 (1) C ? ? 0 ( C 为 常 数 ) . (2) ( xn )' ? nxn?1 (n ? Q) .(3) (sin x)? ? cos x .(4) (cosx)? ? ? sin x . (5)

(ln x )? ?

1 1 e x x x x x ; (log a )? ? log a (6) (e )? ? e ; (a )? ? a ln a . x x

193.导数的运算法则 (1) (u ? v)' ? u ' ? v' .(2) (uv)' ? u 'v ? uv' .(3) ( ) ?
'

u v

u 'v ? uv ' (v ? 0) . v2

194.复合函数的求导法则 设函数 u ? ? ( x) 在点 x 处有导数 ux ' ? ? ' ( x) ,函数 y ? f (u ) 在点 x 处的对应点 U 处有导数 yu ' ? f ' (u) ,则
' ' ' ' ' ' 复合函数 y ? f (? ( x)) 在点 x 处有导数,且 yx ? yu ? ux ,或写作 f x (? ( x)) ? f (u)? ( x) .

第 - 19 - 页 共 19 页


相关文档

【数学】高中数学知识点总结(最全版)
高中数学知识点总结(最全版)(精品)
高中数学知识点总结最全版
高中数学知识点最全版总结【精品推荐】
高中数学知识点总结(最全版)102
2017年高中数学知识点总结(最全版)
高中数学-知识点总结-最全版
高中数学知识点总结(最全版)(强烈推荐)
高中数学知识点总结(最全版)(1)
高中数学知识点总结大全(最新最全版)
电脑版