2.2.2对数函数及其性质(3课时)


§2.2.2 对数函数及其性质(第一、二课时) 一.教学目标 1.知识技能 ①对数函数的概念,熟悉对数函数的图象与性质规律. ②掌握对数函数的性质,能初步运用性质解决问题. 2.过程与方法 让学生通过观察对数函数的图象,发现并归纳对数函数的性质. 3.情感、态度与价值观 ①培养学生数形结合的思想以及分析推理的能力; ②培养学生严谨的科学态度. 二.学法与教学用具 1.学法:通过让学生观察、思考、交流、讨论、发现函数的性质; 2.教学手段:多媒体计算机辅助教学. 三.教学重点、难点 1、重点:理解对数函数的定义,掌握对数函数的图象和性质. 2、难点:底数 a 对图象的影响及对数函数性质的作用. 四.教学过程 1.设置情境 在 2. 2. 1 的例 6 中, 考古学家利用估算出土文物或古遗址的年代, 对于每一个 C14 含量 P, 通过关系式,都有唯一确定的年代与之对应.同理,对于每一个对数式中的,任取一个正的 实数值,均有唯一的值与之对应,所以的函数. 2.探索新知 一般地, 我们把函数 (>0 且≠1) 叫做对数函数, 其中是自变量, 函数的定义域是 (0, +∞) . 提问: (1) .在函数的定义中,为什么要限定>0 且≠1. (2) .为什么对数函数(>0 且≠1)的定义域是(0,+∞) .组织学生充分讨论、交流,使 学生更加理解对数函数的含义,从而加深对对数函数的理解. 答:①根据对数与指数式的关系,知可化为,由指数的概念,要使有意义,必须规定>0 且 ≠1. ②因为可化为,不管取什么值,由指数函数的性质,>0,所以. 例题 1:求下列函数的定义域 (1) (2) (>0 且≠1) 分析:由对数函数的定义知:>0;>0,解出不等式就可求出定义域. 解: (1)因为>0,即≠0,所以函数的定义域为. (2)因为>0,即<4,所以函数的定义域为<. 下面我们来研究函数的图象,并通过图象来研究函数的性质: 先完成 P81 表 2-3,并根据此表用描点法或用电脑画出函数 再利用电脑软件画出

1

2 4 6 8 12 16

-1 0 1 2 2.58 3 3.58 4

y



x

注意到: ,若点的图象上,则点的图象上. 由于()与()关于轴对称,因此,的图象 与的图象关于轴对称 . 所以,由此我们可以画出的图象 . 先由学生自己画出的图象,再由电脑软件画出与的图象. 探究:选取底数>0,且≠1)的若干不同的值,在同一平面直角坐标系内作出相应的对数函 数的图象.观察图象,你能发现它们有哪些特征吗? .作法:用多媒体再画出, ,和 提问:通过函数的图象,你能说出底数与函数图象的关系吗?函数的图象有何特征,性质又 如何? 先由学生讨论、交流,教师引导总结出函数的性质. (投影) 图象的特征 函数的性质 (1)图象都在轴的右边 (1)定义域是(0,+∞)

(2)函数图象都经过(1,0)点 (2)1 的对数是 0 (3)从左往右看,当>1 时,图象逐渐上升,当 0<<1 时,图象逐渐下降 . (3)当>1 时,是增函数,当 0<<1 时,是减函数. (4)当>1 时,函数图象在(1,0)点右边的纵坐标都大于 0,在(1,0)点左边的纵坐标 都小于 0. 当 0<<1 时,图象正好相反,在(1,0)点右边的纵坐标都小于 0,在(1,0) 点左边的纵坐标都大于 0 . (4)当>1 时 >1,则>0 0<<1,<0 当 0<<1 时 >1,则<0 0<<1,<0

由上述表格可知,对数函数的性质如下(先由学生仿造指数函数性质完成,教师适当启发、 引导) : >1 0<<1 图 象

性 质 (1)定义域(0,+∞) ; (2)值域 R; (3)过点(1,0) ,即当=1,=0;

(4)在(0,+∞)上是增函数 在(0,+∞)是上减函数

例题训练: 1. 比较下列各组数中的两个值大小 (1) (2) (3) (>0,且≠1) 分析:由数形结合的方法或利用函数的单调性来完成: (1)解法 1:用图形计算器或多媒体画出对数函数的图象.在图象上,横坐标为 3、4 的点在 横坐标为 8.5 的点的下方: 所以, 解法 2:由函数+上是单调增函数,且 3.4<8.5,所以. 解法 3:直接用计算器计算得: , (2)第(2)小题类似 (3)注:底数是常数,但要分类讨论的范围,再由函数单调性判断大小. 解法 1:当>1 时,在(0,+∞)上是增函数,且 5.1<5.9. 所以, 当 1 时,在(0,+∞)上是减函数,且 5.1<5.9. 所以, 解法 2:转化为指数函数,再由指数函数的单调判断大小不一, 令 令 则 当>1 时,在 R 上是增函数,且 5.1<5.9 所以,<,即< 当 0<<1 时,在 R 上是减函数,且 5.1>5.9 所以,<,即> 说明:先画图象,由数形结合方法解答 课堂练习:P85 练习 第2,3题 补充练习 1.已知函数的定义域为[-1,1],则函数的定义域为 2.求函数的值域. 3.已知<<0,按大小顺序排列 m, n, 0, 1 4.已知 0<<1, b>1, ab>1. 比较 归纳小结: 对数函数的概念必要性与重要性; ②对数函数的性质,列表展现.


相关文档

2.2.2 对数函数及其性质 第三课时
高中数学(人教b版)必修1课件:3.2 3.2.2 第二课时 对数函数及其性质的应用(习题课)
高中数学苏教版必修1 3.2.2第二课时 对数函数及其性质的应用 作业
高中数学人教B版必修一学案:3.2.2 第2课时 对数函数及其性质的应用
高中数学人教B版必修一课件:3.2.2 第2课时 对数函数及其性质的应用
新人教a版高中数学必修一2.2.2《对数函数及其性质》(第3课时)课件 最新
高中数学第三章基本初等函数Ⅰ3.2.2第2课时对数函数及其性质的应用学案新人教B版必修
高中数学第三章指数函数和对数函数3.2指数扩充及其运算性质课时作业2
2015秋高中数学 2.2.2对数函数及其性质(第3课时)课件 新人教A版必修1
2.2.2对数函数及其性质(第3课时)课件新人教A版必修1
电脑版