二次函数的值域

优质课教案

二次函数的值域及应用

教学内容:二次函数值域及应用 教学目标:
1、知识与能力目标:理解并掌握二次函数用配方法求值域,能够熟练求出 含有字母参数的二次函数值域求法及应用。 2、过程与方法目标:培养学生观察、比较、分析、推理的能力。让学生体 会由特殊到一般和数形结合的思想方法。 3、情感与价值观目标:在交流讨论过程中体验探究的方法、乐趣和价值。 获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。培养 学生科学的探究精神。

教学重点:
二次函数在给定区间上的值域的求法

教学难点:
对称轴含参数时二次函数定区间值域的求法

教学方法:
启发、讨论、引导式

教学过程:
(一)复习回顾
我们知道, 二次函数 y ? ax 2 ? bx ? c?a ? 0? 当 x ? R 时的值域是先把它配方为
b ? 4ac ? b 2 ? y ? a? x ? ? ? 2a ? 4a ?
2

? 4ac ? b 2 ? ? 4ac ? b 2 ? ,?? ? ; a ? 0 时, 则当 a ? 0 时, 值域为 y ? ? 值域为 y ? ? ? ?, ? ? 当 ? 4a ? ? 4a ? ?

如: y ? ? x 2 ? 2 x ? 3 ? ??x ? 1? ? 4
2

∴值域为 y ? ?? ?,4?

(二)启发诱导、探索求知
如果二次函数 y ? ax 2 ? bx ? c?a ? 0? 的定义域在某一区间内时,则不仅要考 虑图象顶点的函数值, 而且必须考虑这一区间端点的函数值(一般可结合函数图
1

象进行分析) ,注意函数在这一区间内的单调性。 举例:已知函数 y ? x 2 ? 2 x ? 3 求函数 y ? f (x) 在下列区间上的值域。 (1) x ? ? ?2, 0? (2) x ? ? 2, 4? (3) x ? [0,3] (4) x ? [?1,2] 过程: 1)对称轴为 x ? 1? ? ?2, 0? ,且 x ? ? ?2, 0? 在对称轴 x=1 左侧 故函数 f(x)在区间[0,2]上为减函数。 所以函数 y ? f (x) 的值域是:[-3,5](指出对称轴与区间位置特征) 2)对称轴 x ? 1? ? 2, 4? ,且 x ? ? 2, 4? 在对称轴 x=1 右侧 故函数 f(x)在区间[2,4]上为增函数。 所以函数 y ? f (x) 的值域是:[-3,5] (指出对称轴与区间位置特征) 3)对称轴 x ? 1? [0,3] ,且顶点的纵坐标为函数的最小值, 所以函数 y ? f (x) 的值域是:[-4,0] (指出对称轴与区间位置特征) 4)同上。函数值域为[-4,0] 引导学生的得出规律-----二次函数的值域与区间之间存在着什么样关系? (教师引导、学生讨论) 求二次函数值域时,要紧紧抓住对称轴和区间的位置关系。 分为四种情况: (1)对称轴在区间右边 (2)对称轴在区间左边 (3)对称轴在区间内,且靠近左端点 (4)对称轴在区间内,且靠近右端点 针对不同的位置, 二次函数的值域的求法使学生体验从特殊到一般的学习规 律,认识事物之间的普遍联系与相互转化,培养学生用运动的观点看问题。

(三)巩固新知、举一反三
例:已知函数 y ? x 2 ? 2ax ? a 2 ? 3, 若 x ? ? ?1, 2? , 求函数最小值 m(a) 。 学生分析:讨论对称轴 x=a 与区间[-1,2]的位置关系。
当 a ? (??, ?1) 时, 当 a ? ? ?1, 2? 时, 当 a ? (2, ??) 时,

f ( x) min ? m(a) ? f (?1) ? a 2 ? 2a ? 2 f ( x)min ? m(a) ? f (a) ? ?3 f ( x) min ? m(a) ? f (2) ? a 2 ? 4a ? 1
2

本环节的目的是实现学生知识的应用, “实践―――认识―――再实践” 完成 过程,力求通过例题的讲授、规范的板书养成学生良好地解题习惯,起到教师的 示范作用。

(四)归纳小结、深化目标
1、对于二次函数 y ? ax 2 ? bx ? c?a ? 0? 在 x ? R 时的值域,只要配方得到顶 点,顶点处即为最大值或最小值,从而得到函数的值域。 2、对于二次函数 y ? ax 2 ? bx ? c?a ? 0? ,且定义域为某一区间,这时的值域 不仅要考虑顶点,而且要考虑区间端点处的函数值; 3、对于二次函数 y ? ax 2 ? bx ? c?a ? 0? 中含有待定系数时,要注意待定系数 所取的值决定的顶点是否在定义域范围内,必要时进行分类讨论。当顶点不在区 间内时,注意函数的单调性。 (动轴定区间)

(五)作业练习
1、函数 y ? ? x 2 ? 4 x ? 2 在区间[0,3]上的最大值是_________,最小值是 _______。 2、已知 x 2 ? 1,求函数 f ( x) ? x 2 ? 2ax ? 3 的最小值。

(六)课堂教学设计说明
1、本节课的要点是在学生掌握二次函数值域的基础上,深入研究其在某一 给定区间上的最值。根据这类问题的主要题型,为此设计了“轴变区间定”的题 型,并着重介绍此类问题的研究方法,比如例题。 2、通过例题的设计着重体现了数形结合和分类讨论两种重要的思想方法, 使学生体会到图象和参数在数学学习中的重要地位,体现出运动、变化的特征。 3、通过由易到难的学习,帮助学生更好地理解问题,提高学习数学的兴趣, 提高课堂教学效率。

3


相关文档

二次函数值域
二次函数的值域及应用
二次函数值域讲解
二次函数在闭区间的值域
二次函数的值域及其拓展
二次函数的值域作业2
二次函数的值域作业3
二次函数的值域.ppt
闭区间上,二次函数的值域
二次函数的值域及应用天
电脑版