河南省新乡、许昌、平顶山三市2019届高三上学期第一次调研考试数学(文)试题 Word版含答案

新乡许昌平顶山 2018-2019 学年高三第一次调研考试 数学(文)试题 金榜题名,高考必胜!蝉鸣声里勾起高考记忆三年的生活,每天睡眠不足六个小时,十二节四十五分钟的课加上早晚自习,每天可以用完一支中 性笔,在无数杯速溶咖啡的刺激下,依然活蹦乱跳,当我穿过昏暗的清晨走向教学楼时,我看到了远方地平线上渐渐升起的黎明充满自信,相信自己很多考生失利不是输在知识技能上而是败在信 心上,觉得自己不行。临近考试前可以设置完成一些小目标,比如说今天走 1 万步等,考试之前给自己打气,告诉自己“我一定行”! 第 I 到功自成,金榜定题名。 卷最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马 最新试卷多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。 一选择题(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有 一项是符合题目要求的。) 2 (1)已知集合 P= ?x |1 ? x ? 2? , Q= x | x ? x ? 2 ? 0 ? ? ,那么 P ? Q 等于 (A) ? (B){1} (C){x|-2≤x≤2} (D){x|1<x≤2} (2)在复平面内,复数 z ? i(1 ? 2i) 的共轭复数 (A)2-i (B)-2-i (C)2+i (D)-2+i (3) 在平面直角坐标系 xoy 中,已知点 O(0,0),A(0,1),B(1,-2),C(m, 0),若 OB ?AC , 则实数 m 的值为 (A)-2 (B)- ??? ? ??? ? 1 2 (C) 1 2 (D)2 (4)等差数列{an}的前 n 项和为 Sn,已知 a1=一 100,且 5S7 一 7S5= 70,则 S101 等于 (A) 100 (B)50 (C)0 (D) -50 (5)一个几何体的三视图如图所示(单位:cm),则此几何体的表面积是 (A) (80+1 6 2 ) cm2 (B)84cm2 (C)(96+16 2 ) cm2 (D) 9 6cm2 (6)在区间〔一 1,1〕上随机取一个数 x,使 sin ?x 1 的值介于 0 到 之间的概率为 2 2 (A) 1 3 (B) 1 6 (C) 1 3? (D) 1 6? (7) 三棱锥 P-ABC 的四个顶点都在半径为 5 的球面上, 底面 ABC 所在的小圆面积为 16 ? , 则该三棱锥的高的最大值为 (A)7 (B)7.5 (C)8 (D)9 (8)已知抛物线 y 2 ? 2 px( p ? 0) 与双曲线 x2 y 2 ? ? 1(a ? 0, b ? 0) 有相同的焦点 F,点 a 2 b2 A 是两曲线的一个交点,且 AF⊥x 轴,则双曲线的离心率为 (A) 2 +2 (B) 5 +1 (C) 3 +1 (D) 2 +1 (9)将函数 f(x)=sin2x 的图象向左平移 的单调递增区间是 ? 个长度单位,得到函数 g(x)的图象,则 g(x) 4 (10)执行如图所示的程序框图,如果输入 m=30,n=18,则输出的 m 的 值为 (A)0 (B)6 (C)12 (D)18 (11)若关于 x 的不等式 x ? ax ? c ? 0 的解集为{x|一 2<x<1},则函 2 数 g(x)= e ?x 的单调递减区间为 (A)(一 ? ,0) (B)(一 ? ,一 2) (C)(一 2,一 1) (D)(一 2,0) (12) 对实数 a 与 b, 定义运算 设函数 f (x) = (x 一 1) , ax 2 若函数 y=f(x)一 c 的图象与 x 轴恰有两个公共点,则实数 c 的取值范围是 (A)(一 1,l〕U(2,+co) (C)(一 co,一 2)U(1,2〕 二、填空题(20 分) (13)设函数 f ( x ) 为定义在 R 上的奇函数, f (1) ? __ (B)(一 2,一 1〕U(1,2〕 (D)〔一 2,一 1〕 1 , f ( x ? 2) ? f ( x) ? f (2) ,则 f (5) = 2 ?y ? x ? (14)已知实数 x,y 满足 ? y ? 3 x ,则函数 z ? x ? 5 y 的最大值是 ?x ? y ? 1 ? (15)在△ABC 中,AC=7,∠B= · 2? 15 3 ,△ABC 的面积 S= ,则边 AB 的长为___ 3 4 (16)已知点 A(-2,0),B(0,2),若点 C 是圆 x2 ? 2 x ? y 2 =0 上的动点,△ABC 的面积 的最小值为____ 三、解答题(解答应写出文字说明,证明过程或演算步骤。) (17)(本小题满分 12 分) 设 f (? ) ? sin n ? ? cosn ? , n ??n | n ? 2k, k ? N? ? (I)分别求 f (? ) 在 n=2,4,6 时的值域; (II)根据(I)中的结论,对 n ? 2k , k ? N? 时 f (? ) 的取值范围作出一个猜想(只需写 出猜想,不必证明)。 (18)(本小题满分 12 分) 如图(甲),等腰直角三角形的底边 AB=4,点 D 在线段 AC 上,DE⊥AB 于点 E,现 将△ADE 沿 DE 折起到△PDE 的位置(如图(乙)) (I)求证:PB⊥DE; (II)若 PE⊥BE,PD= 2 ,求四棱锥 P-DEBC 的体积。 (19)(本小题满分 12 分) 某工人生产合格零售的产量逐月增长,前 5 个月的产量如下表所示: (I)若从这 5 组数据中抽出两组,求抽出的 2 组数据恰好是相邻的两个月数据的概率; (II)请根据所级 5 组数据,求出 y 关于 x 的线性回归方程 程预测该工人第 6 个月生产的

相关文档

河南省新乡、许昌、平顶山三市2018-2019学年高三上学期第一次调研考试数学(文)试题 Word版含答案
河南省新乡、许昌、平顶山三市2019届高三上学期第一次调研考试数学(理)试题 Word版含答案
河南省新乡、许昌、平顶山三市2017-2018学年高三上学期第一次调研考试数学(文)试题 Word版含答案
河南省三市(许昌平顶山新乡)2015届高三10月第一次调研考试数学文试题 Word版含答案
河南省新乡、许昌、平顶山三市2018-2019学年高三上学期第一次调研考试数学(理)试题 Word版含答案
电脑版