江苏省2010届高三数学考前专练(26)


江苏省 2010 届高三数学考前专练(26)
一.填空题(本大题共有 12 小题,每空 5 分,共 60 分。 ) 1.函数 y
2

? 2 sin(

?
3

?

?x
2

) 的最小正周期是

ks5u



2.“ x ? x ”是“ x ? 1 ”的 既不充分又不必要中选一个) 3.将函数 y ? sin(2 x ?

条件. (从充分不必要、必要不充分、充要、

?
3

) 的图象先向左平移

? , 然后将所得图象上所有的点的横坐标变为原 3


来的 2 倍(纵坐标不变) ,则所得到的图象对应的函数解析式为 4.在直角 ?ABC 中 , ?C
ks5u

? 90? , ?A ? 30?, BC ? 3 , D 为斜边 AB 的中点,则
. .

AB ? CD =
5.函数
ks5u

y ? x ? 2sin x 在(0, 2? )内的单调增区间为

6.若向量 a ? ( 3,1) , b ? (sin ? ? m, cos ? ) , ( ? ? R ),且 a // b ,则 m 的最小值 为 . 7.已知函数 y ? 3x?1 ? a 的图象不经过第二象限,则 a 的取值范围是 .

8.已知向量 OA ? (k ,2),OB ? (2,5),OC ? (k ? 1,9) ,且 AB ? BC ,则 AB 与 AC 夹角 的余弦值为 9.曲线
ks5u

. .

y?

1 2 和 y ? x 在它们交点处的两条切线与 x 轴所围成的三角形面积是 x
y
P1 P2 )到达点 P 1 ,然后 O

10.如图,点 P 是单位圆上的一个动点,它从初始位置 P 0 (单位圆与 x 轴的交点) 开始沿单位圆按逆时针方向运动角 ? ( 0 ? ? ?

?
2

? 继续沿单位圆逆时针方向运动 到达点 P 2 ,若点 P 2 的横坐标为 3 4 ? ,则 cos? 的值等于 . 5
11. 已知 a ? 0 ,设函数 f ( x) ? 小值为 N ,那么 M ? N ? 12 . 已 知 :

P0

x

2009x?1 ? 2010 ? sin x( x ? [?a, a]) 的最大值为 M ,最 2009x ? 1


3?| x ?1|

, ]上是增函数}, N ? b 方程 3 4 x?n ? b ? 1 ? 0 有实数解} , 设D ? M ?N , 且定义在 R 上的奇函数 f ( x ) ? 2 在 x ?m

M ? ?a

a x在 [ ? 函数 y ?2 sin
ks5u

? ?

?

D 内没有最小值,则 m 的取值范围是



二.解答题(本大题共有 2 小题,每题 20 分,共 40 分。 ) 13 . 在 锐 角 三 角 形 ABC 中 , 已 知 内 角 A 、 B 、 C 所 对 的 边 分 别 为 a 、 b 、 c , 且

3 (1 ? tan A ? tan B). 3 2 2 2 (I) 若 c ? a ? b ? ab ,求 A、B、C 的大小; tan A ? tan B ?
ks5u

(II)已知向量 m ? (sin A, cos A), n ? (cosB, sin B),求 | 3m ? 2n | 的取值范围.

14.如图, 在直四棱柱 ABCD-A 1 B 1 C 1 D 1 中,底面 ABCD 为等腰梯形,AB//CD,AB=4, BC=CD=2,
ks5u

AA 1 =2, E、E 1 分别是棱 AD、AA 1 的中点. (Ⅰ)设 F 是 AB 的中点, 证明:直线 EE 1 //平面 FCC 1 ; (Ⅱ)证明:平面 D1 AC ⊥平面 BB1C1C

D1 A1

C1 B1

E1 E A

D F

C B

参考答案
一、填空题 1.4 2.必要不充分 3. y ? sin ? x ?

? ?

??
? 3?

4. -9

5. (

? 4?
3 , 3

)

6 . -2

7 . (??, ?3] 二、解答题

8.

2 3 或 2 5

9.

3 4

10.

3 3?4 10

11. 4019

12. m ?

3 2

tan A ? tan B 3 3 ? ,? tan(A ? B) ? 3 3 ? A ? B ? ? . ???3 分 15 解:由已知 1 ? tan A ? tan B 6 ? ? ? ? ? 0 ? A ? ,0 ? B ? . ? ? ? A ? B ? . 2 2 2 2 得
(I)由已知

a2 ? b2 ? c2 1 ? 得 cosC ? ? ,? C ? . 2ab 2 3 ? ?A ? B ? C ? ? , 5? ? ? ?A? , B ? , C ? . ????6 分 ? 12 4 3 ? 5? ? ? 由? A ? B ? , 解得A ? ,B ? . 6 12 4 ? ? ? C? ? 3 ?
(II)|3m-2n|2=9 m 2+4n2-12 m·n =13-12(sinAcos B +cosAsin B) =13-12sin(A+B)=13-12sin(2 B +

? ).?????????9 分 6 ? ? ? ? ∵△ABC 为锐角三角形,A-B= ,∴C=π -A-B< ,A= +B< . 6 2 6 2 ? ? ? ? 5? ? 1 ? ? B ? , ? 2B ? ? . ? sin( 2 B ? ) ? ( ,1). ????12 分 6 3 2 6 6 6 2 2 ∴|3m-2n| =∈(1,7).∴|3m-2n|的取值范围是(1, 7 ).???????14 分

14.【解析】 (Ⅰ) (1)在直四棱柱 ABCD-A 1 B 1 C 1 D 1 中, 取 A1B1 的中点 F1,连结 FF1 , C1F1 , 由于 FF1 ∥ BB1 ∥ CC1 ,所以 F1 ? 平面 FCC1 , 因此平面 FCC1 即为平面 C1CFF 1 ,连结 A1D,CF1, // // 由于 CDA1F1 = D1C1 = CD, 所以四边形 A1F1CD 为平行四边形,因此 CF1//A1D, 又因为 E、E 1 分别是棱 AD、AA 1 的中点,所以 EE1//A1D,

所以 CF1//EE1,又因为 EE1 ? 平面 FCC 1 , CF1 ? 平面 FCC 1 , 所以直线 EE 1 //平面 FCC 1 . (Ⅱ)证明:连结 AC,在 VFBC 中,FC=BC=FB, 又 F 为 AB 的中点,所以 AF=FC=FB, 所以 AC⊥BC,又 AC⊥ CC1 ,且 CC1 ? BC ? C , 所以 AC⊥平面 BB1C1C ,又 AC ? 平面 D1 AC , 故平面 D1 AC ⊥平面 BB1C1C . 【考点定位】本题以直四棱为载体,考查空间中平行与垂直关系的证明,考查同学们的空间想 象能力和逻辑推理能力.


相关文档

江苏省2010届高三数学填空题专练(26)
江苏省2010届高三数学考前专练(28)
江苏省2010届高三数学考前专练(10)
江苏省2010届高三数学考前专练(5)
江苏省2010届高三数学考前专练(4)
江苏省2010届高三数学考前专练(27)
江苏省2010届高三数学考前专练(8)
江苏省2010届高三数学填空题专练(28)
江苏省2010届高三数学考前专练(25)
江苏省2010届高三数学填空题专练(30)
电脑版